【摘要】Indole-3-acetamide (IAM) is the first confirmed auxin biosynthetic intermediate in some plant pathogenic bacteria.Exogenously applied IAM or production of IAM by overexpressing the bacterial iaaM gene in Arabidopsis causes auxin overproduction phenotypes.However,it is still inconclusive whether plants use IAM as a key precursor for auxin biosynthesis.Herein,we reported the isolation IAM HYDROLASE 1(IAMH1) gene in Arabidopsis from a forward genetic screen for IAM-insensitive mutants that display normal auxin sensitivities.IAMH1 has a close homolog named IAMH2 that is located right next to IAMH1on chromosomeⅣin Arabidopsis.We generated iamh1 iamh2 double mutants using our CRISPR/Cas9gene editing technology.We showed that disruption of the IAMH genes rendered Arabidopsis plants resistant to IAM treatments and also suppressed the iaaM overexpression phenotypes,suggesting that IAMH1 and IAMH2 are the main enzymes responsible for converting IAM into indole-3-acetic acid (IAA)in Arabidopsis.The iamh double mutants did not display obvious developmental defects,indicating that IAM does not play a major role in auxin biosynthesis under normal growth conditions.Our findings provide a solid foundation for clarifying the roles of IAM in auxin biosynthesis and plant development.
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《现代制造技术与装备》 2015-07-02
《重庆高教研究》 2015-06-30
《重庆高教研究》 2015-06-30
《重庆高教研究》 2015-06-29
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点